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Abstract

Well-known anomalies and stable patterns in equity returns are widely employed to guide
active stock selection. The use of overlapping multifactor models built on these patterns induces
correlated trade across investors. Consistent with correlated trade, a stock with a strong signal
from a parsimonious stock selection model is associated with greater future trade activity and
lower return volatility. Stocks favored by the model also experience significant decreases to
their level of liquidity and increases in the degree to which their liquidities covary. These results
suggest that correlated trading among institutions is an important source of commonality in
liquidity, and that measures of portfolio liquidity that ignore these changes understate risk.
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1 Introduction

Stock liquidity has long been a topic of interest and research. Over the past thirty years or so,

this body of literature has evolved significantly as the focus of research develops and shifts. Early

articles concerning stock liquidity focused on cross-sectional variation and its determinants. Amihud

and Mendelson (1986), Glosten and Harris (1988), and Stoll (1989) measure and decompose the bid-

ask spread with a focus on the component due to information and adverse selection. Researchers

have also used transaction-level data to characterize liquidity in terms of the price response to

order flow, among them Brennan and Subrahmanyam (1996), Hasbrouck (1991), and Easley and

O’Hara (1987). Amihud (2002) proposes a widely-used measure of liquidity that is highly correlated

to computationally intensive variables that require transaction-level data, yet is much simpler to

calculate because it employs daily data. Beginning with Chordia, Roll, and Subrahmanyam (2000)

and Hasbrouck and Seppi (2001), the focus shifted from the level of individual stock liquidity

to documenting a systematic component to changes in liquidity. The finding that a systematic

liquidity factor explains a significant portion of the time-variation in liquidity motivates the studies

of Pastor and Stambaugh (2003) and Acharya and Pedersen (2005), both of which find a stock’s

sensitivity to a systematic liquidity factor helps explain cross-sectional heterogeneity in returns,

and hence a liquidity premium in the sense of classical asset pricing models.

This paper extends previous work in this field in order to better understand factors that induce

common variation in stock liquidity. While it is well-established that the liquidities of individual

stocks do covary, the reasons for this commonality are less well understood. One branch of literature

focuses on the role that market makers play in determining liquidity through managing inventory

risk in the presence of external funding constraints. Grossman and Miller (1988) and Brunnermeier

and Pedersen (2009) are among the articles providing evidence that market makers do affect time

variation in liquidity through these channels. Lo and Wang (2000) take a different approach and

demonstrate that if returns obey a linear factor structure, then under suitable conditions trading

volume will follow the same structure. Thus, the state variables represented by the factors determine

both covariance in returns and covariance in trading volume and presumably liquidity comovement

as well. Kamara, Lou, and Sadka (2008) study changes in liquidity commonality and find that over

time comovement of the liquidities of large stocks has increased while comovement of small stock

2



liquidity has decreased. They attribute this result to the large growth in institutional ownership

that would affect stock liquidity as institutions tend to trade the stocks together in a correlated

manner as is the case, for example, for index funds.

This paper builds upon these earlier studies to further demonstrate that correlated trading

affects both the level of stock liquidity and comovement of liquidity. To capture correlated trading,

a multifactor model based on asset pricing anomalies is used to generate the types of signals that

active portfolio managers employ when selecting stocks. I find that a strong signal to buy or sell a

stock is associated with greater trade activity, lower future volatility consistent with a directional

bias in trade, a lower level of stock-specific liquidity, and greater comovement of individual stock

liquidity within the set of stocks favored by the multifactor model. This is an extension of the

result in Kamara, Lou, and Sadka (2008) which ties correlated trading more broadly to firm size

based on the notion that large institutional investors cannot feasibly trade small, illiquid stocks.

The multifactor model used in this work provides more specific signals of the individual stocks that

many investors may trade.

The finding that correlated trading affects liquidity commonality has important implications

for measures of portfolio risk. Following dramatic market events such as the default of Long-Term

Capital Management, the Quant Crisis of August 2007, and the 2008 Financial Crisis, there is an

increased awareness that overlapping portfolio positions may introduce significant risk. The rapid

liquidation of one portfolio can cause a severe market disruption that adversely affects investors

holding similar positions. If a loss is large enough, it could trigger a feedback cycle in which other

investors reduce their positions to manage risk and leverage, and in so doing amplify the original

disruption. Although the evidence is inconclusive, this is a commonly cited cause of the perverse

behavior of widely-used stock selection factors in August 2007. In response to this episode, many

investors began asking if these stock selection factors were crowded and could no longer be relied

upon to deliver the same performance as they had in the past. Aside from such dramatic events,

this paper demonstrates that the regular correlated trading of many investors does affect stock-level

liquidity. If measures of portfolio liquidity are based on estimates extracted from return data prior

to the stock’s entry into the portfolio, liquidity risk may be understated to the extent that the

increase in liquidity commonality is ignored.
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A focus on the liquidity dimension associated with factor crowding is a novel feature of this

study. Previous studies have concentrated on the profitably of potentially crowded factors and the

primary question of interest has been if active investors have driven the expected profits to zero,

much as increasingly aggressive arbitrageurs would be expected to correct mispricing through their

exploitation. Examples of these studies include Gustafson and Halper (2010) and Cahan and Luo

(2013), and the evidence they provide suggests that factors are not fully crowded in this sense.

Further evidence comes from Verbeek and Wang (2013), who demonstrate that using the SEC-

mandated quarterly disclosures to mimic the holdings of active mutuals funds provides the same

performance as the target funds, and hence the strategies appear to have excess capacity. Rather

than a focus on profitiability, the present work is focused on how the liquidities of individual stocks

may be affected by active institutional investors with overlapping models and positions. There is

good reason to expect that institutional trading would affect stock liquidity. An obvious example

of this effect is the large return documented of stocks upon their inclusion in a major index. Early

studies in this area by Harris and Gurel (1986) and Shleifer (1986) concluded that a significant

portion of this return is temporary and subsequent research has supported this conclusion. In the

case of index inclusion, passive index portfolio managers acquire the stock to replicate the index,

and though the affected stocks are highly liquid large cap stocks and demand is clearly uninformed,

the limited liquidity of the market cannot absorb the demand shock without a price increase. In

a similar vein, if many investors use similar models to identify stocks for active portfolios, then

they may trade in a correlated manner that exhausts the liquidity available in the stocks that they

trade.

The remainder of this paper is organized as follows. Section 2 proposes a simple multifactor

model for stock selection, provides estimates of its parameters, and documents its out-of-sample

performance. Section 3 contains the main results concerning the effects of correlated trading on

the level of trade activity, the level of stock volatility, the level of stock liquidity, and changes in

liquidity commonality. Section 4 provides concluding remarks.
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2 Multifactor Models

Active investors employ a variety of quantitative approaches to stock selection. One prominent

example is technical analysis, which in its simple form can employ the type of pattern recognition

usually associated with it, and in its more modern manifestation can be based on signals generated

by advanced time series models such as the fractional vector autoregression with error correction

model of Caporin, Ranaldo, and de Magistris (2013). Instead of restricting their input data to his-

torical prices, other investors adopt a more comprehensive approach that also relies on fundamental

data. A simple fundamental model would calculate ratios obtained from financial statements and

then model returns as a function of these ratios in a regression framework. Other fundamental

approaches depart from the familiar regression framework but retain the focus on financial ratios,

for instance generalized data envelopment analysis developed in Edirisinghe and Zhang (2007). Still

other investors expand their data to include nearly any source that can somehow be quantified,

and textual analysis of verbal sources such as corporate disclosures and management interviews is

a prime example of how this may be done.1

While there are many approaches to active stock selection, they are not equally popular. A great

many active investors employ linear multifactor models during the investment process, and some

evidence of their popularity can be inferred from their commercial success. The most obvious way

of using this type of model is to generate expected return signals to aid in stock selection. Indeed,

even a manager with a traditional focus on fundamental research may subscribe to a quantitative

multifactor model as a check or additional signal to inform their stock choices. Even if the model

is not used directly for stock selection, it is difficult to ignore measures of active portfolio risk

captured by the factors on which these models are based. Because performance attribution is often

conducted within this framework, portfolio managers that ignore the factors altogether may end up

explaining large bets that they did not intend to take. Commercial multifactor linear models also

1With the benefit of computing power, the field of textual analysis has rapidly developed during the past ten years.
Werner and Frank (2004) study 45 stocks in the Dow Jones Industrial Average and Dow Jones Internet Commerce
indexes and find a significant relation between the tone of messages posted on two popular internet sites and stock
volatility. Tetlock (2007) uses a column from the Wall Street Journal as the textual source and finds short term
predictability in returns and volume based on the tone of the column. Feldman, Govindaraj, Livnat, and Segal
(2010) study the management discussion and analysis sections of quarterly and annual financial statements and find
that tone changes have incremental predictive power relative to earnings surprises and measurements of accruals.
McKay Price, Doran, Peterson, and Bliss (2012) study transcripts of public conference calls with management and,
similar to Tetlock (2007), find that linguistic tone predicts abnormal returns and trading volume.
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have innate appeal because of their similarity to (and under certain conditions, consistency with)

arbitrage pricing theory. For these reasons, multifactor fundamental models enjoy widespread use.

The MSCI Barra USE3 and Standard and Poor’s Capital IQ models are two of the most popular

models within the institutional investment community. Institutional investors own and control a

large fraction of equity markets, so their use of these models creates the opportunity for the models

to influence the behavior of the stocks they trade. Both the models marketed by Barra and S&P

Capital IQ are based on a large number of firm-specific variables that past research has shown either

predict stock returns or are related to risk. Many of these variables are gleaned from the anomalies

literature, including familiar factors capturing firm size, book-to-price, momentum, volatility, and

liquidity. In the case of the USE3 model, there are 39 variables (so called descriptors) organized

into 12 groups referred to as risk indexes.2 For example, the growth risk index is one way the

model attempts to capture the return spread between value and growth stocks, and it relies on

historical dividend payout ratio, growth rate in total assets, five-year trailing earnings growth rate,

analyst-predicted growth rate, recent earnings changes, and variability in capital structure.

The question this paper addresses is whether or not correlated trading among investors affects

the liquidities of the stocks they trade. Given the popularity of multifactor models, it is reasonable

to use one as a basis for measuring the stocks that are likely to be traded by active institutional

managers. However, proposing a specific model creates a tension between two considerations. On

one hand, a more detailed model with a greater number of factors is a more realistic representation

of the models actually employed by investors, and will therefore better capture the trade activity of

some investors. Yet, greater model specificity is also more likely to diverge from the consensus that

gives rise to correlated trading. For instance, many investors in some manner use historical standard

deviation or market beta as a measure of volatility; Aside from the actual subscribers to USE3,

fewer investors use other descriptors included in the volatility risk index, such as serial correlation,

implied volatility from options, the range between 52-week high and low prices, and the product

of beta and standard deviation. Many active managers pride themselves on their development of

unique factors and proprietary models, while many more do not possess the resources necessary to

develop the models in-house.

2While there are 12 risk indexes, two of them are non-linearities in other risk indexes (firm size and beta) and
hence they are not separate, independent factors.
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To balance model specificity with the desire to capture general patterns in trade, the multifactor

stock selection model that I employ in this study uses one descriptor from each risk index in the

USE3 model. Table 1 provides a summary of the included variables, all of which are commonly

seen in empirical studies focused on the cross-section of stock returns. There is a vast literature

on stock anomalies and many other reasonable variables could be chosen in place of or in addition

to those listed in Table 1. However, these particular factors are especially relevant because they

constitute the core of popular, commerically available quantitative models. To ensure that the

empirical results that appear later in this paper are not tied to this specific model, I have repeated

the following analyses using an alternative model after choosing reasonable substitutes for each

descriptor. The results obtained using the alternative model are similar to those presented here.

The essential characteristic shared by these models is that they capture common investment signals

shown to explain cross-sectional variation in returns in a parsimonious manner.

In addition to specifying the stock selection model used to generate trade signals, an important

empirical decision must be made concerning the sample period. The objective is to capture a time

interval during which active investors could combine many investment signals to generate stock

rankings for a large universe. Doing so requires the availability of the many types of data used to

calculate the selection factors, and the technological innovations that have made it possible to access

and store this data and estimate the model in a production environment. These conditions would

not have been satisfied, for instance, during the 1970s, when accessing financial data and statistical

computing were in their infancy compared to the present day. Jacobs and Levy (1988) proposes

and tests one the earliest comprehensive multifactor models of this type, and as the authors were

institutional portfolio managers at the time of publication, could be considered the beginning of

this period. While it was feasible for more sophisticated investors to employ this approach as early

as the late 1980s, it was not until somewhat later that many other investors became informed of

this approach and overcame the barriers to entry. These barriers have been steadily declining as the

development of front-end user interfaces make it increasingly simple to access multiple databases,

specify a model, and estimate its parameters. With these considerations in mind, I begin the sample

period in January 1995 and extend through December 2014.
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2.1 Model Estimation and In-Sample Performance

The variables listed in Table 1, hereafter referred to as factors, are used in a cross-sectional

regression to estimate return premia. The estimated premia are then used to generate out-of-sample

expected returns. In particular, for each month t in the sample period, the following regression is

estimated:

rit = αt +
9∑

k=1

λkt z
k
it−1 + εit (1)

where rit is the monthly total return on stock i earned from the end of month t−1 through the

end of month t, zkit−1 is stock i’s standardized exposure to factor k at the end of month t−1, and

λkt is the premium associated with factor k during month t. Equation (1) is estimated using both

ordinary and weighted least squares, the latter weighting observations by the inverse of the residual

standard deviation obtained from estimating the Fama-French three-factor model during the prior

year with daily data. Each month, standardized exposures are produced for each stock for each

factor by subtracting the cross-sectional average of the variable and then dividing the difference by

the cross-sectional standard deviation. As with the factors themselves, the approach to variable

measurement and estimation employed here is standard and is described in detail by Chincarini

and Kim (2006) and MSCI Barra.3

Table 2 presents summary statistics for the variables used to calculate factor exposures, monthly

returns, and liquidity level. The Amihud (2002) measure of liquidity captures the notion of price

impact by calculating the ratio of the absolute daily return to dollar volume traded:

ALis =
|ris|
vispis

(2)

where ris, vis, and pis are daily observations of return, volume, and closing price. The statistics in

the table are time-series means of cross-sectional means. The time-averaging of Amihud liquidity

obscures the strong negative trend in the cross-sectional average during this period, and in most of

the following analyses the focus will be on first differences in monthly averages. The statistics in

Table 2 provide basic measures of the factor data before it is standardized.

As indicated in Table 1, the Barra USE3 model includes a volatility risk index as is typical

3See Chapter 5 of Chincarini and Kim (2006) and Section 5 of the USE3 Handbook detailing factor exposure
calculation and model estimation.
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for a multifactor model of this type. In Section 3, one area of focus is the change in stock-level

volatility following a signal generated by using (1) to forecast expected returns. In these cases,

the inclusion of volatility as one of the factors would be inappropriate, especially if the estimated

volatility premium is negative.4 Even in cases when the focus is on liquidity and not volatility,

given a relation between these two variables, it would be confounding to include a volatility factor

in the stock selection model. Therefore, I exclude the volatility factor and estimate the model using

the nine remaining factors for all of the empirical work in this paper.

Table 3 provides the time-series means of the monthly premia. Because the model is estimated

monthly while the exposures draw upon less frequently updated data, the standard errors incor-

porated in the t-statistics are calculated using the method of Newey and West (1987) and allow

for 11 lags of overlap. The estimated premia are mostly consistent with the anomalies literature

that motivates the factors. There is a clear value premium attached to the earnings yield, dividend

yield, book-to-market, and profitability. There is also an illiquidity premium attached to lower

dollar volume. A momentum strategy generates a positive average return during this sample, de-

spite the large negative returns it produced in the early portion of 2009. The premium normally

attached to small firms is actually negative but only marginally significant. Market beta and the

debt ratio have signs opposite to what is expected, although neither is significant As suggested by

Table 3, there is substantial time variation in the estimated premia, and the decade from 2000–2010

witnessed especially high volatility for many of these standard return anomalies.

The goal of the multifactor model used in this research is to capture the investment signals on

which many investors may have traded. As an informal but useful check on the reasonableness

of the model and its ability to achieve this goal, I examine the factor premia during July and

August 2007. During this time, the quantitative equity approach experienced severe upheaval as

stock selection factors generated strongly perverse performance, causing many portfolio managers

employing these models to experience significant short-term losses. Rothman (2007), Khandani

and Lo (2007), Asness (2008), Khandani and Lo (2011), and Cahan and Luo (2013) discuss this

episode in detail. One pertinent aspect of this episode is that while there was nothing extraordinary

4Some studies support the notion that idiosyncratic risk earns a positive risk premium on average, notably Goyal
and Santa-Clara (2003), whereas other articles such as Guo and Savickas (2008), Pollet and Wilson (2010), and Chen
and Petkova (2012) document a negative relation between idiosyncratic risk and returns.
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about the performance of the aggregate market during this time, multifactor models (in particular,

traditional valuation factors) experienced a systematic disruption of historic magnitude that was

largely reversed by the end of August. To be considered an accurate proxy for the great variety

of multifactor models in use, the model employed in this paper should at a minimum exhibit this

pattern during the summer of 2007.

Figure 1 depicts the performance of two valuation factors included in the multifactor model. To

create this plot, the multifactor model is estimated using daily returns as the dependent variable

and the resulting daily estimates of the factor premia are compounded over an interval beginning on

July 23, 2007, and ending on August 31, 2007. For reference, the plot also includes the cumulative

performance of the Fama-French HML portfolio as another measure of the return to a value strategy.

The results illustrate the large negative factor returns which betting on value stocks generated

during this period. The losses associated with HML are larger than the other two factors, which

is not surprising as its method of construction controls only for firm size as a competing factor,

whereas the factor premia are estimated within a multivariate regression framework. It is worth

noting that the two negative premia are additive to the extent that book-to-market and earnings-

to-price exposures are correlated across stocks. Aside from the larger loss, HML shows only a small

recovery by the end of August, whereas the other two factors recover much of the lost ground.

The behavior of earnings-to-price and book-to-market depicted in Figure 1 is consistent with the

experiences that many investment managers reported at the time, and provides confirmation that

the specification of the multifactor model used in this paper overlaps with the stock selection factors

that investment managers employ.5

2.2 Out-of-Sample Performance of the Multifactor Model

At the end of each month in the sample period, the multifactor model is used to generate

expected returns on all stocks in the sample. Expected returns are calculated as the product of the

most recent observations of standardized factor exposures and the historical average factor premia.

In particular, at the end of month t, a twelve-month moving average of the premia estimated using

5Rothman (2007) was published on August 9, 2007, and provides an immediate response to portfolio managers’
worries about the magnitude of the perverse factor returns during the preceding days. The main purpose of the
report is to publicly recognize that the disruption was affecting the entire quantitative equity industry and was not
a failure of any particular model.
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(1) for {t− 12, t− 11, . . . , t− 1} is used as the historical average. Once expected returns have been

calculated, the sample of stocks is ranked and divided into quintiles in which quintile 5 represents

the stocks with the highest expected returns and quintile 1 contains the stocks with the lowest

expected returns.

Table 4 provides average returns to portfolios based on the expected return signals, and thus

a measure of how the multifactor model performs out-of-sample. Average returns are strongly

related to the expected return generated by the model. The top row of the table shows that an

equal-weighted long-short strategy of holding the highest expected return quintile and shorting

the lowest expected return quintile produced an average monthly return of 0.97%. Looking more

generally at the entire cross-section, the time-series mean of the Spearman rank correlation between

expected returns and subsequent realized returns (the rank information coefficient) is 0.056. The

partial signals in the following rows correspond to independent strategies that select stocks only on

the basis of exposures to the indicated factor. Small stocks, high beta stocks, momentum winners,

value stocks, and illiquid stocks all offer higher average returns. Despite the Quant Crisis at the

beginning of August 2007, using book-to-market as a long-short signal yields a highly significant

monthly return of 1.12%, and book-to-market is the most powerful factor during this period (owing

in part to its recovery in the second half of August 2007, which makes the episode seem small when

using monthly data). On the whole, the results in Table 4 are consistent with directional predictions

of the factors, the magnitude of the gross returns documented in the anomalies literature, and the

level of predictability one might expect from a multifactor model of this type.

3 Main Results

This section presents the main empirical findings supporting the notion that many investors

use similar investment signals, and that the unintended coordination of their trading both exhausts

the liquidities of the stocks they trade and alters their liquidity risk. To make this argument,

Section 3.1 first describes how the multifactor stock selection model developed in the previous

section is used to generate trade signals. Patterns in the level of share turnover and stock volatility

surrounding the point in time in which the signal is generated are studied in Sections 3.2 and 3.3.

These patterns are consistent with investors acting upon the signals and trading in a directional
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manner to cause an order imbalance. An order imbalance would tend to strain available liquidity,

and consequently Section 3.4 examines changes in liquidity and documents that on average liquidity

decreases substantially following a signal. Finally, recognizing that such a model is typically used

to rank and trade many stocks concurrently, Section 3.5 examines how stocks traded by the model

load on liquidity risk factors before and after the signal. This section presents evidence that after a

signal is generated for a stock, its liquidity covaries less with an aggregate liquidity factor and more

with the liquidities of other stocks traded by the model. This is consistent with the stocks favored

by the model being traded as a basket, and demonstrates that overlapping investment models are

one source of commonality in liquidity.

3.1 Trade Signals

The multifactor model studied in Section 2 is a parsimonious example of a stock selection model

intended to be as general and as uncontroversial as possible. It relies on standard factors that have

been studied extensively in the anomalies literature and these factors have been processed in the

standard way to produce expected return forecasts. Because many investors incorporate proprietary

research into their investment process, the expected return rankings generated by this simple model

should not be used as reliable trade indicators. Furthermore, knowing the relative ranking of a stock

may not provide much information about the timing of a trade, as would be the case for a stock

that ranked highly throughout a long period. Instead of trying to capture trade signals directly

through the level of expected return, I focus on significant changes in expected return. If two

models rely on similar variables, but the precise manner in which the factors are computed and

the weights applied to them are different enough, they may generate significantly different rankings

for a sample of stocks. However, when a multifactor model abruptly changes the expected return

from low to high or vice versa, it is likely due to simultaneous changes in the exposures to multiple

factors. If two models use similar factors and at least agree on the signs of the weights, these

extreme exposure changes will cause both models to revise their expected return estimates at the

same time and in the same direction. If sufficiently large, the change in the expected return is a

trade signal produced by both models at the same time, leading to correlated trade.

To capture large changes in expected returns, I examine transitions between quintile portfolios
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based on expected returns. In particular, at the end of month t, expected returns for month t+ 1

denoted by Et[rit+1] are estimated for all stocks using the multifactor model, and stocks are sorted

into quintiles on the basis of expected return. Let Q(Et[rit+1]) be the quintile ranking assigned to

a stock’s expected return at time t so that quintile 5 (1) contains the highest (lowest) expected

return stocks. Trade signals are identified by comparing Q(Et[rit+1]) to Q(Et−1[rit]) for each stock

in the sample using the following definitions:

Signal Type Q(Et−1[rit]) → Q(Et[rit+1])

Strong Buy 1 5

Weak Buy 1 4
Weak Buy 2 5

Strong Sell 5 1

Weak Sell 4 1
Weak Sell 5 2

There are many considerations relevant to a trade decision in addition to the expected return, not

least among them risk and liquidity constraints. Nonetheless, it is reasonable to expect that a stock

with a large upward revision to its expected return would be the subject of increased buy activity.

If this manner of classifying trade signals is too noisy, then one would not expect to document the

associated changes in trade activity, volatility, and liquidity that I present in the following sections.

Table 5 provides a summary of the transition frequencies across expected return quintiles. The

main diagonal of the transition matrix contains just under 64% of the sample, and the first upper

and lower diagonals contain an additional 15% each. This creates the impression of relatively low

volatility in revisions to expected returns, a fact that is not surprising because many of the factors

are based on financial statement data that updates either quarterly or annually. Taken together,

strong buys (upper-right corner) and strong sells (lower-left corner) account for only 0.30% of a

sample of 1.23 million trade signals. Weak buys and weak sells sum to just over 1% of the sample.

While the frequency of the trade signals on which I focus is low, it should be noted that these

signals would be expected to account for a disproportionate share of the trade activity for investors

using this or a similar model.
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The transition matrix is a summary of trade frequencies in the pooled sample. For more detail

on the output of the stock selection model, Figure 2 plots the number of each type of signal produced

at the end of each month in the sample. Overall, there are 1798 strong buy signals, 1757 strong

sell signals, 6738 weak buy signals, and 6280 weak sell signals. There is clearly periodic behavior

in the timing of the signals related to the release of new annual data that flows into the model

through updated factor exposures. However, the pattern is not completely regular owing to the

other factors that are updated more frequently. In addition to the roughly annual cycle, there is a

small uptick in model activity in the rebound following the Financial Crisis, from roughly March

through December 2009. Aside from these two patterns evident in Figure 2, there is little pattern

in the signals over time.

3.2 Trade Signals and Trading Activity

A first step to establishing the effects of correlated trade is to examine the level of trade

activity associated with the signals described above. An increase in the level of trade activity is

not a necessary condition for correlated trade to affect liquidity, as the correlation causes a bias

in the net direction of trade that would consume more liquidity even if the overall level of trade

activity does not change. However, one would expect that if the trade signals are capturing actual

investment strategies, there will be some increase in volume associated with them.

To capture changes in trading activity, I measure average daily share turnover within each of the

six months centered on the date the trade signal is generated. To allow for comparison across stocks

with different levels of trade activity, I normalize the monthly averages by their own time-series

average. More specifically, daily turnover for stock i on day s is computed as TOis = vis/qis, where

vis and qis are volume and shares outstanding. Let TOim be the mean of TOis during each of the

months m = t − 3, t − 2, . . . , t + 3. Normalized turnover for stock i during month m is calculated

as:

TO
∗
im =

TOim

1
7

∑t+3
u=t−3 TOiu

m = t− 3, t− 2, . . . , t+ 3 (3)

Normalized turnover is measured separately for strong buys, weak buys, strong sells, and weak

sells. In this and much of the following analysis, all other signals are pooled together into a “No

Signal” category. To create a balanced panel that allows for direct comparison, any signal for
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which I cannot compute the seven estimates of normalized turnover is excluded from the analysis

of trading activity.

Figure 3 illustrates a strong and asymmetric pattern associated with the trade signals. Prior

to the signal being generated, trade activity associated with buy signals is relatively low, running

at approximately 80% of the average during this six-month window for strong buys and 90% of the

average for weak buys. Following the buy signals, there is a large increase in trade activity that

slowly decays during the next three months. Comparing the month following the signal with the

month preceding the signal, the mean increase in normalized turnover for strong (weak) buys is a

highly significant 35% (18%). This pattern is consistent with a sizable population of investors acting

on the buy signals. In contrast, the level of trade activity associated with the sell signals is higher

preceding the signal than after it, and there is a clear downward trend in turnover throughout the

entire window. For strong sells, normalized turnover falls by roughly 13% in the month following

the signal. Weak signals show a more sluggish response, falling only 0.7% at first, but continuing

to fall so that normalized turnover during the three months following the signal averages 95% of

the pre-signal level.

The asymmetric pattern with respect to buys and sells is not surprising. Nearly all investors

could act on a buy signal, but not all could act on a sell signal. If an investor already owns the

shares associated with a buy signal, they could purchase more, and if no shares are owned, a new

position could be initiated with a purchase. In contrast, to trade on a sell signal the investor must

already hold those shares long or be willing to short them. The number of investors already holding

the stock long is likely to be a small subset of the investing population, and many investors are

either prohibited from shorting altogether or are limited in the short positions that they can hold

due to risk considerations. Therefore, not as many investors could trade on a sell signal, and we

would expect the change in trading activity associated with buys to be larger. However, there is one

way in which a sell signal could affect investors that do not hold the stock long and are unwilling to

short it: These investors can ignore the stock, not trading it to hold it long and also not shorting

it. The result would be a reduction in trade activity associated with sell signals, precisely as seen

in Figure 3. The fact that the downward trend associated with sell signals begins before the trade

signal may be evidence that firms slowly release negative information to the market in a manner not
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captured by the model exposures, for instance statements made by the management in anticipation

of poor reported performance.

3.3 Trade Signals and Return Volatility

It is possible for the patterns in trade activity documented above to have no effect on stock

liquidity. This could occur if, in the case of strong buy signals, an increase in the demand to acquire

shares was somehow matched by an increase in the number of shares for sale. The key ingredient for

producing a change in liquidity is correlated trade, and changes in the level of trade activity do not

necessary reflect changes in correlated trade. One means of detecting correlated trade is to test for

the effects that it would have upon stock volatility. Stock volatility is a function of order flow, and

correlated trading changes the nature of order flow and should therefore produce a detectable effect

if it is significant. More precisely, positively correlated trades would lower volatility because the

trades tend to push from one side of the market, causing a trending in returns that is the opposite

of volatility. For instance, if all trades submitted on a stock are orders to buy, then transactions

will push the price steadily upward, and deviations from this mean upward trend will be relatively

small.

The link between correlated trade and stock volatility can be made more rigorous by examining

microstructure models of price formation. As a particular example, consider the model of Glosten

and Harris (1988), which is based on transaction level data:

∆pit = αi + λiv
∗
it + ψi∆dit + εit (4)

In this model, v∗it is signed volume (buyer-initiated is positive, seller initiated is negative) associ-

ated with a transaction, dit is a binary trade indicator (+1 for buy, −1 for sell), and ∆dit and ∆pit

measure the change in trade direction and transaction price relative to the previous trade. The

parameter λi measures nonproportionate transaction costs (price impact) and ψi measures propor-

tionate costs (bid-ask spread). Given a positive correlation between signed volume and ∆dit, the

variance of price changes is:

var(∆pit) = λ2
i var(v∗it) + ψ2

i var(∆dit) + λiψicov(v∗it,∆dit) (5)
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In normal circumstances when order flow is random and transactions are uncorrelated, trade direc-

tion will randomly bounce between buy orders (positive volume) and sell orders (negative volume),

thereby creating a relatively high variance in both v∗it and ∆dit. On the other hand, when trades

are correlated, ∆dit is more often zero which leads to a lower variance in ∆dit. Correlated trade

also causes the variance of v∗it to be lower because many orders will be on the same side of the

market, and therefore v∗it will be either predominantly negative or positive. In essence, correlated

trade leads to sequential and additive price impacts of the same sign based only on λi (trending),

while random trade causes wider oscillations due to the differential bid and ask prices captured by

ψi, and larger variance price impact due to the changing sign of v∗it.

I examine changes in both the total volatility and idiosyncratic volatility of stocks for which the

model generates a trade signal. Total volatility is defined as the standard deviation of daily total

returns computed within a particular calendar month. Idiosyncratic volatility is measured as the

standard deviation of the residuals obtained from estimating the Fama-French three factor model

using daily returns within a particular calendar month. To test for a change in volatility associated

with a trade signal generated at end of month t, I compare average volatility during month t + 1

(from the end of month t through the end of month t+ 1) with volatility during month t− 1 (from

the end of month t − 2 through the end of month t − 1). The days during month t are excluded

because the timing of the signal is uncertain. The factor exposures computed at the end of the

month could be based on revisions in fundamental data released at the beginning of the month, and

if so, trading on the signal (and any related volatility effects) would begin well before the end of

the month, so the volatility during month t would be a poor reference point for measuring change.

Table 6 provides average changes in volatility for different sets of trade signals. The columns

labeled “∆σ” measure the raw changes in volatility, and the columns labeled “∆σ/σ̄” express this

change more meaningfully as a fraction of longer-term average volatility. In particular, let σit be

either total or idiosyncratic volatility measured during month t as described above. The change

in volatility following a trade signal at the end of month t is ∆σit+1 = σit+1 − σit−1, and average

volatility during the prior year is σ̄it = 1
12

∑t−1
s=t−12 σis. The table provides the means of ∆σit+1

and ∆σit+1/σ̄it taken across the observations in each set of trade signals.

The table conveys a clear tendency for volatility to decrease following a trade signal. On average,
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idiosyncratic volatility decreases by 0.18%, or 3.3% of its longer term average. The magnitude of the

decrease is approximately the same for strong and weak signals, although the statistical significance

associated with weak signals is higher (likely owing to a substantially larger sample). Volatility

decreases more following buy signals than it does for sell signals, a finding consistent with more

investors being able to act upon positive signals. These same patterns in volatility changes are

evident when focusing on total volatility instead of idiosyncratic volatility. In particular, volatility

falls following all signals, the magnitude of the drop is roughly the same for strong and weak signals,

but the drop is larger for buys than it is for sells.

3.4 Trade Signals and the Level of Stock Liquidity

The preceding sections document changes in trading volume associated with trade signals

and concurrent decreases in volatility consistent with a net bias in trade direction. In addition to

affecting volatility, a bias in trade direction should affect stock liquidity due to the order imbalance.

In the case of a strong buy signal, there will be excess demand to purchase shares that can only

be satisfied by attracting sellers through higher prices or dealer intervention. In the extreme case,

each additional buy order will push the price higher and the price impact measured during this

period will be large. Stock prices reacting in this manner to order imbalances is consistent with

the dealer inventory paradigm modeled by Stoll (1978), in which dealer costs increase as inventory

deviates from an optimal level, and hence order imbalances affect the provision of liquidity.6

I examine changes to Amihud liquidity surrounding the generation of a trade signal. To do so, I

employ an approach similar to measuring the change in volatility in the previous section. For each

signal in the sample at the end of month t, average Amihud liquidity of the stock is computed using

daily data within each of the months t − 12, t − 11, . . ., t + 1. Letting these monthly averages be

denoted as AL, the change in Amihud liquidity is calculated as ∆ALit+1 = ALit+1−ALit−1, where

month t is again excluded to provide a clean measure of change. A longer-term pre-signal average

for Amihud liquidity is computed as ALit+1 = 1
12

∑t−1
s=t−12ALis. Table 7 presents the percentage

change in Amihud liquidity computed as ∆AL/AL for each group of signals. On average, Amihud

liquidity rises by a very significant 18.8%, signaling a strong tendency for stock liquidity to decrease

6Looking at the stocks traded on the NYSE in aggregate, Chordia, Roll, and Subrahmanyam (2002) find that daily
order imbalances are strongly associated with lower liquidity, regardless of the sign of the bias in trade direction.
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following a trade signal. The percentage decrease in liquidity is larger for strong signals than it is

for weak signals, and it is also larger for sell signals than it is for buys signals. The latter effect

is consistent with literature that examines asymmetry in liquidity with respect to trade direction.

Brennan, Huh, and Subrahmanyam (2013) decompose Amihud liquidity based on the sign of the

return and a proxy for order imbalance and find that the relation between Amihud liquidity and

stock returns is strongest when trade is biased toward sells and the return is negative. This finding

supports the notion that stock liquidity is especially sensitive to sell-offs, and consistent with this

finding Table 7 shows the largest decrease to liquidity is associated with strong sell signals.

Table 7 also divides the signals based on the market capitalization of the stocks as ranked at the

time the signal is generated. Large stocks are in the top 1000 (roughly corresponding to the Russell

1000), small/midcap stocks are ranked from 1001–3000 (roughly the Russell 2000), and microcap

stocks are ranked below 3000. There are two opposing predictions concerning the relation between

trade signals, the change in liquidity, and market cap. It may be the case that trade signals affect

the liquidities of larger stocks more than smaller stocks because the institutional investors that are

more likely to use a multifactor approach cannot feasibly trade small stocks. This is consistent

with the results in Kamara, Lou, and Sadka (2008) and their conclusion that large stock liquidities

covary to a greater extent in recent times due to an increase in institutional ownership. On the

other hand, large stocks are held by many passive index funds, and on average they are very actively

traded and enjoy a relatively high level of liquidity. Therefore, one might expect large stocks to

better absorb the correlated trade resulting from overlapping models of this type, and that the

liquidities of small stocks would exhibit the stronger decline. Ultimately it is an empirical question,

and Table 7 provides strong evidence in favor of the latter prediction. In particular, the drop in

liquidity is largest and most significant for the smallest stocks, while the change in liquidity is close

to zero and generally insigificant for the largest stocks. However, even among the largest stocks

there is evidence that liquidity falls following strong sell signals.

3.5 Trade Signals and Liquidity Comovement

If individual stock liquidity responds to order imbalances associated with correlated trade, and

similar models generate signals for many stocks at the same time, then it is reasonable to expect
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that the comovement of stock liquidity will also be affected by the generation of a trade signal.

The stocks favored by the model as having strong signals will experience concurrent decreases in

their liquidities, regardless of whether the signal to trade is a buy or a sell. These coordinated

liquidity shocks should be reflected in the tendency for the liquidities of the stocks traded by the

model to move together more than they otherwise would. Artificial comovement of returns induced

by investors that trade in a correlated manner is studied in a theoretical model by Barberis and

Shleifer (2003) and confirmed empirically by Barberis, Shleifer, and Wurgler (2005).

To test for a change in stock liquidity comovement following a signal, I adapt the approach

that Kamara, Lou, and Sadka (2008) employ to document time-varying liquidity comovement as

a function of market capitalization. In the present case, liquidity comovement is measured jointly

with respect to two separate liquidity factors. The first factor is a traditional aggregate liquidity

factor based on all stocks not traded by the model at a given point in time. In particular, let θt

denote the set of stocks for which a strong buy, strong sell, weak buy, or weak sell signal has been

generated at the end of month t, and let Θt =
⋃t

s=t−2 θs be all stocks affected by such signals

during the most recent three months.7 A clean measure of the aggregate liquidity of stocks not

traded by the model on day s during month t is calculated by averaging Amihud liquidity over the

set of stocks not in Θt:

LA
s =

1

#{i 6∈ Θt}
∑
i 6∈Θt

|ris|
vispis

for day s in month t (6)

Given the number of trade signals relative to the number of firm-months in the sample, the aggregate

liquidity factor LA is very close to what previous studies have used to measure systematic liquidity.

Additionally, a second daily liquidity factor is constructed only from the stocks that have been

7The types of signals generated by this stock selection model are valuation measures attached to abnormal per-
formance over a medium or long-term investment horizon, and are therefore not very sensitive to when the signal is
acted upon. In contrast, some quantitative stock selection strategies are used for predicting short-term returns (such
as high frequency trading algorithms), and must be acted upon quickly to be valuable. It is with this in mind that I
use trade signals during the recent three months to define aggregate and model liquidity. In unreported tables, the
definition of Θt was narrowed to include only signals generated for month t (Θt = θt) and also made broader by
including an additional history of three month of signals (Θt =

⋃t
s=t−5 θs). The results in both cases are similar to

those presented in Table 8 and the particular assumption used is not material.
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traded by the model in recent months:

LM
s =

1

#{i ∈ Θt}
∑
i∈Θt

|ris|
vispis

for day s in month t (7)

If a stock is traded by the model in month t, it is excluded from the calculation of LM for months

t−1 and t.8 This ensures that the covariance of stocks traded by the model with LM are not inflated

simply due to their inclusion in the factor. To estimate liquidity comovement for each stock having a

signal, a time-series regression of daily percentage changes in individual stock liquidity are regressed

on percentage changes in the aggregate liquidity factors:

ln

(
ALis

ALis−1

)
= αi + βAi ln

(
LA
is

LA
is−1

)
+ βMi ln

(
LM
is

LM
is−1

)
+ εis (8)

A specification using percentage changes in liquidity is preferred due to the fact that average

Amihud liquidity falls dramatically during the sample and is therefore non-stationary. This spec-

ification also facilitates comparison across stocks that have different levels of liquidity. For each

trade signal generated at time t, equation (8) is estimated during a pre-signal period defined as

[ t − 142 trade days, t − 22 trade days ] and a post-signal period defined as [ t + 1 trade day, t +

120 trade days ]. Any changes in the comovement of stock liquidity associated with a trade signal

can be measured by comparing the estimates of βA and βM from the pre-signal period with those

obtained during the post-signal period.

Table 8 provides the mean estimates of the liquidity betas from (8) averaged across the various

sets of trade signals. The estimates make it clear that the aggregate liquidity factor LA plays a

central role in explaining individual stock liquidity. However, caution should be exercised when

comparing the magnitudes of the liquidity betas because the variance of LM is larger than the

variance of LA, as at any given time LM averages across a much smaller set of stocks. The final

four columns of the table test the mean changes in the liquidity betas. The results present a

consistent picture in which the liquidities of stocks that are favored by the model begin to covary

more strongly with other stocks favored by the model, and covary less with aggregate market

8In other words, every stock that is traded by the model has its own version of LM in which that stock has been
purged from the calculation of equation (7).
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liquidity. Pooling the set of signals, the mean change in the aggregate liquidity beta βA is negative

and the mean change in βM is positive, and both estimates are statistically significant. When

examining the categories of signals individually, the pattern of changes is preserved but in many

cases the estimate is not statistically significant at usual levels. In particular, the decrease in βA

following the signal is not statistically significant for strong buys and sells, and the increase to βM

is only significant for weak buys.

The magnitudes of the changes in both liquidity betas are larger for buy signals than for sell

signals. This finding fits well with the evidence on trade signals and trading activity in Section

3.2. A buy signal is an active signal in the sense that it induces many investors to submit purchase

orders for shares, and correlated trade and the resulting order imbalance will exist to some extent

until all interested investors have acted or the signal decays. During this period, the liquidity of

the stock will on average decrease, and will do so at the same time as other stocks being traded by

the model. This leads to the strong and significant increases to βM and decreases to βA seen for

buy signals in Table 8. In contrast, sell signals are much less active than buy signals. A few current

shareholders may reduce their holdings based on the signal but they are likely to be a small subset

of all investors, and some small number of other investors may short the stock, but the greatest

effect of a sell signal may be for potential buyers to ignore the stock. In the case of a buy signal,

a large population of investors flock to the market to trade in the same direction, whereas for a

sell signal a small number of investors may trickle in sell orders to an inactive market. In both

cases, stock liquidity will decrease, but it appears that sell signals do not induce sufficient activity

to generate a significant change in the comovement of liquidity.

4 Summary and Conclusions

A decision to trade a stock should be made based on the expected net return that can be

earned, and the net return is dependent on the stock’s liquidity. Limitations on liquidity and

the impact of trading is a primary concern for institutional investors that manage large portfolios.

Recognizing the importance of liquidity and the role it plays in investment decisions, much research

has been done to further our understanding of how to measure it and what determines it, both

cross-sectionally and over time. While the present study shares the goal of better understanding
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liquidity, it is different from previous studies because of its focus on how investment decisions

affect liquidity rather than vice versa. This focus embodies the idea of factor crowding, and it is

an important topic for study as technological progress makes it easier for investors to implement

overlapping quantitative models.

The evidence presented in this study supports the argument that overlapping equity investment

strategies affect the liquidities of the stocks that they trade. Inspired by a widely used commericial

multifactor quantitative stock selection model, I measure trade signals as large and abrupt changes

in the expected return rankings generated by the model. I find that the stocks associated with these

trade signals exhibit the patterns in trade activity and volatility that one would expect if many

investors acted on the signals. Consistent with the directional nature of a signal and the resulting

order imbalance, I also find that individual stock liquidity decreases following the signal. Finally,

consistent with the notion that stocks favored by the model are linked by the existence of a signal,

this study demonstrates that the liquidities of stocks with trade signals covary more strongly after

the signal is generated, and at the same time their exposure to aggregate liquidity risk decreases.

Factor crowding most often refers to the idea that the profits associated with using common

investment signals for stock selection are diminishing as more investors employ these signals. How-

ever, a focus on profitability is incomplete. Some strategies may thrive on crowding, such as

momentum, and for these is factor crowding unimportant because they remain profitable? This

study is focused on risk, a dimension to factor crowding that is equally important to profitability,

but for which there is little empirical evidence at the present. To an investor who uses the types

of signals employed in this study, the increased comovement of stock liquidity is a risk that cannot

be diversified except by trading outside the model. Measuring liquidity on the basis of the stock’s

historical liquidity level and historical liquidity beta understates the true risk of the portfolio be-

cause it ignores the additional risk created through crowding. The consequences of this additional

risk can be severe as evidenced by recent episodes in financial markets.

The obvious way to mitigate this additional liquidity risk is to decrease the overlap in positions

by creating a stock selection model less correlated to the consensus. Factor crowding has the

flavor of a contagion in which a concentrated liquidity event for one investor can be transmitted to

other investors in concentrated form through overlap, such as occurred during August 2007. Many
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institutional investors allocate substantial resources to developing unique models and investment

strategies, and for these investors additional liquidity risk will be lower and their exposure to factor

crowding less of a concern. However, it is difficult to completely eliminate this type of risk because

many multifactor models at their core are reliant on the same expected regularities in stock returns.

This risk must also be managed, and to do so requires the development of portfolio risk metrics

that incorporate the notion of factor crowding. I leave this challenge to future research.
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Table 1: Factor Definitions and Data Sources

This table provides a description of each of the predictive variables used in the multifactor model.
These variables are motivated by those employed by the Barra USE3 Equity Risk Model and are
chosen to capture the major risk indexes of that model in a simple way. Accounting data is obtained
from the quarterly and annual Compustat Industrial databases and market data is obtained from
CRSP.

Barra Risk Index Factor Construction (Descriptor)

Beta Slope coefficient on the CRSP value-weighted index from estimating a
regression using the most recent five years of monthly data, requiring at
least 36 valid return observations.

Momentum 12-month momentum computed as the cumulative total return earned
during the eleven-month period ending one month prior to exposure
calculation.

Size Log of market capitalization calculated using daily closing prices and
shares outstanding from one trading day prior to exposure calculation.

Earnings/Price Most recently reported annual EPS allowing a 90 calendar day reporting
lag, divided by daily price one day prior to exposure calculation.

Volatility Variance of residual terms relative to the Fama-French three-factor model
estimated using one year of daily returns ending on the day prior to
exposure calculation.

Growth Gross profit margin calculated using revenue and cost of goods sold
summed over the most recent four quarters, allowing 60 calendar days for
a reporting lag.

Dividend Yield The sum of dividends paid during the most recent annual period divided
by the closing price on the day prior to exposure calculation.

Book-to-Price The book-to-market ratio calculated as in Fama and French (1996).

Trading Activity Average dollar volume computed using daily observations of closing price
and shares traded during the month ending on the day prior to exposure
calculation.

Leverage Debt ratio computed as long-term debt to total assets based on quarterly
statement data allowing for a 60 calendar day reporting lag.
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Table 2: Summary of Liquidity and Factor Exposures

Exposures to factors detailed in Table 1 are calculated for all stocks in the merged CRSP/Compustat
database at the end of each month for the period January 1995 through December 2014. Coverage
is the percentage of the sample for which it is possible to compute an exposure. Observations of
idiosyncratic volatility and market beta are considered valid only when the regressions from which
they are obtained include at least 100 observations. Observations of Amihud liquidity and daily dollar
volume are averages computed during the month ending on the day prior to exposure calculation,
and must be based on at least 15 observations. The below statistics are the time-series means of the
cross-sectional statistics indicated in the column headings.

equal- value-
weighted weighted standard

Factor coverage mean mean median deviation

Idiosyncratic volatility (%) 96.61 4.0917 1.9246 2.9431 4.7810
Gross profit margin 93.62 0.0150 0.4302 0.3688 2.4754
12-month momentum 95.86 0.0842 0.0875 0.0195 0.3397
Earnings yield 93.92 -0.0951 0.0380 0.0360 0.4349
Dividend yield 99.22 0.0098 0.0179 0.0000 0.0192
Book-to-Market 94.35 0.7841 0.4179 0.5554 0.9272
Debt ratio 97.47 0.1614 0.1734 0.0923 0.1909
Market beta 93.14 1.1007 0.9933 0.9575 0.8003
Market capitalization ($B) 99.22 2.1277 26.7902 0.2671 6.3332
Daily dollar volume ($M) 98.83 17.6539 183.4268 1.4349 48.3143

Monthly return (%) 98.42 0.9895 0.8929 0.1413 14.6280
Amihud liquidity (×106) 93.41 0.2154 0.0020 0.0047 0.8473
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Table 3: In-Sample Fitting of Multifactor Model

Each month, total stock returns earned during month t are regressed on the standardized factor
exposures measured at the end of month t− 1:

rit = αt +

9∑
k=1

λkt z
k
it−1 + εit

The below table provides the time-series means and t-statistics associated with the estimated
monthly factor premia. The GLS method weights the cross-sectional observations by the inverse
of residual variance measured relative to the Fama-French three-factor model based on daily data
during the previous year. The t-statistics have been calculated using the method of Newey and West
(1987), allowing for eleven periods of overlap based on the use of annual financial data. The sample
period is 199501–201412.

OLS GLS

Factor λ̄ t-stat λ̄ t-stat

Intercept 0.747 2.02 0.990 3.03
Market cap 0.134 0.96 -0.035 -1.16
CRSP-VW β 0.121 1.18 0.164 1.50
12-month momentum 0.273 2.81 0.260 2.42
Earnings/Price 0.311 3.96 0.269 2.84
Dividend yield 0.279 1.98 0.217 1.29
Dollar volume -0.089 -1.25 -0.047 -1.96
Book-to-Market 0.279 5.53 0.158 3.00
Gross profit margin 0.272 4.39 0.395 5.02
Debt ratio -0.064 -1.43 -0.099 -2.87

mean R2 0.059
median R2 0.042
Number of months 240

29



Table 4: Multifactor Model Out-of-Sample Performance

Each month, a multifactor model of stock returns is used to generate expected returns for the
following month:

Et[rit+1] =

9∑
k=1

zkitλ̄
k
t where λ̄kt =

t−1∑
s=t−12

λks (9)

where zkit is stock i’s exposure to factor k at the end of month t and λks is the estimated premium
associated with factor k during month s. The Rank IC is the Spearman rank correlation between
the expected return generated by the model and the subsequent monthly return. The full model
uses all factors whereas partial signals are based only on the exposure to the indicated factor. The
sample period is 199501–201412.

Quintile Returns Q1−Q5

E[r] Signal Rank IC Q1 Q2 Q3 Q4 Q5 return t-stat

Full Model 0.056 0.604 0.731 1.007 1.239 1.573 0.969 2.306

Partial Signals

Market cap 0.052 1.844 1.137 1.037 1.113 1.003 -0.840 -2.152
Market beta 0.022 1.089 1.302 1.440 1.405 1.468 0.379 1.799
Momentum 0.035 1.093 1.229 1.181 1.182 1.529 0.436 1.610
Earnings yield 0.062 0.903 1.041 0.995 1.106 1.290 0.388 1.764
Dividend yield 0.031 0.969 1.043 1.076 1.128 1.256 0.287 0.872
Dollar volume 0.037 1.571 1.198 1.179 1.191 0.981 -0.590 -1.937
Book-to-market 0.029 0.840 0.923 1.206 1.344 1.961 1.122 3.305
Gross profit margin 0.032 0.924 1.146 1.300 1.288 1.572 0.648 3.611
Debt ratio 0.012 1.455 1.171 1.174 1.250 1.059 -0.397 -1.795
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Table 5: Trade Signals

At the end of each month, all stocks in the sample are ranked into quintiles on the basis of the expected
returns generated by the multifactor model. Q(Et[rt+1]) = 5 (1) is the quintile of highest (lowest) expected
return stocks when forecast at time t. The quintile ranking for each stock is compared to its ranking the
previous month to determine trade signals. The below matrix provides transition frequencies for all possible
trade signals using the pooled sample of signals. A stock is considered a strong buy at time t if it is in
quintile 5 at the end of month t but was in quintile 1 at the end of month t− 1. Similarly, a transition from
quintile 5 at t− 1 to quintile 1 at t would be considered a strong sell. A weak buy can be either a transition
from quintile 1 to quintile 4, or a transition quintile 2 to quintile 5. A weak sell is defined symmetrically as
either a transition from quintile 5 to quintile 2, or from quintile 4 to quintile 1.

Transition Frequencies %, (N=1,231,906)

Q(Et[rt+1])

1 2 3 4 5

1 15.93 3.09 0.59 0.24 0.15
2 3.20 11.52 4.00 0.96 0.31

Q
(E

t−
1
[r

t
])

3 0.58 4.08 10.33 4.20 0.81
4 0.22 0.93 4.18 10.96 3.71
5 0.15 0.29 0.77 3.66 15.13
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Table 6: Trade Signals and Changes in Volatility

Volatility is measured before and after a trade signal is generated by the multifactor model. Total volatility is
defined as the standard deviation of total returns during a particular calendar month. Idiosyncratic volatility
is the standard deviation of residuals associated with estimating the Fama-French three factor model using
daily returns within a given month. Let σit be the volatility for stock i computed during month t The
columns labeled ∆σ measure the raw change in volatility as:

∆σit = σit+1 − σit−1

Returns during month t are excluded due to the contamination that may result from uncertain timing of
the trade signal. Average volatility over the previous year is calculated as σ̄it = 1

12

∑t−1
s=t−12 σis, and the set

of columns labeled ∆σ/σ̄ rescale the raw change in volatility to be a percentage of this longer-term average.

Idiosyncratic Volatility (%) Total Volatility (%)

∆σ t-stat ∆σ/σ̄ t-stat ∆σ t-stat ∆σ/σ̄ t-stat

All Signals -0.176 -6.84 -3.33 -7.02 -0.200 -8.10 -4.10 -8.45
All Strong Signals -0.196 -2.80 -3.50 -3.27 -0.253 -3.79 -4.36 -3.92
All Weak Signals -0.167 -6.17 -3.28 -6.20 -0.187 -7.24 -4.02 -7.52
Strong Buys -0.410 -3.86 -6.26 -3.99 -0.544 -5.31 -8.69 -5.32
Strong Sells -0.020 -0.22 -0.87 -0.57 0.011 0.13 -0.34 -0.22
Weak Buys -0.188 -4.83 -2.61 -3.73 -0.280 -7.31 -4.74 -6.53
Weak Sells -0.143 -3.81 -3.98 -5.07 -0.099 -2.82 -3.37 -4.18
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Table 7: Trade Signals and Changes in Liquidity Level

For a trade signal generated at the end of month t, the average daily value of Amihud (2002) liquidity is
calculated within months t− 12, t− 11, . . . , t+ 1. Letting average daily liquidity for month t be denoted by
ALit, the raw change in liquidity associated with the signal is measured as ∆ALit+1 = ALit+1 − ALit−1,
where observations during month t are excluded due to uncertainty in the timing of the signal. A longer-run
average for Amihud liquidity is calculated as ALit = 1

12

∑t−1
s=t−12ALis. The below table presents the means

of ∆ALit+1/ALit within the sets of trade signals.

Full Sample Large Caps Small/Midcap Microcaps

mean t-stat mean t-stat mean t-stat mean t-stat

All Signals 0.188 15.86 -0.008 -1.15 0.062 6.96 0.389 13.25
All Strong Signals 0.259 7.55 0.024 1.32 0.055 2.29 0.488 6.93
All Weak Signals 0.173 14.35 -0.012 -1.70 0.069 7.10 0.349 11.31
Strong Buys 0.166 3.63 0.001 0.07 0.049 2.51 0.405 3.77
Strong Sells 0.358 6.49 0.060 1.79 0.095 2.99 0.572 5.59
Weak Buys 0.143 8.72 -0.053 -1.71 0.014 1.09 0.400 8.61
Weak Sells 0.196 10.85 0.037 3.43 0.125 8.71 0.320 7.27
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Table 8: Trade Signals and Changes in Liquidity Comovement

Two daily liquidity factors are formed each month. The first factor, LA, is an aggregate liquidity factor that
averages Amihud liquidity across all stocks that have not been chosen for trade by the model during the
current or previous two months. The second factor, LM , specifically measures the liquidities of stocks for
which the model has generated some trade signal (strong buy, strong sell, weak buy, or weak sell). Percentage
changes in individual stock liquidity are regressed on a constant and both liquidity factors:

ln

(
ALis

ALis−1

)
= αi + βA

i ln

(
LA

is

LA
is−1

)
+ βM

i ln

(
LM

is

LM
is−1

)
+ εis

For a signal generated at time t, estimates during the pre-signal period are obtained by using daily data
in the interval [ t − 142 trade days, t − 22 trade days ] and post-signal estimates rely on data during [ t +
1 trade day, t + 120 trade days ]. The statistics in the first six columns are means taken across the set of
indicated signals.

Pre-Signal Post-Signal Change: Pre-Signal − Post-Signal

Signal Type βA βM R2 βA βM R2 ∆βA ∆βM t(∆βA) t(∆βM )

All Signals 0.295 0.021 0.268 0.021 -0.027 -2.319
0.292 0.014 0.038 0.265 0.023 0.040 -0.027 0.009 -2.246 3.607

All Strong Signals 0.273 0.020 0.250 0.022 -0.022 -0.859
0.268 0.009 0.037 0.248 0.020 0.041 -0.020 0.011 -0.769 2.065

All Weak Signals 0.301 0.021 0.273 0.021 -0.028 -2.168
0.298 0.015 0.038 0.270 0.024 0.039 -0.028 0.008 -2.131 2.992

Strong Buys 0.254 0.021 0.214 0.019 -0.040 -1.069
0.250 0.010 0.039 0.213 0.022 0.038 -0.037 0.012 -0.979 1.821

Weak Buys 0.292 0.022 0.249 0.020 -0.043 -2.317
0.286 0.013 0.040 0.246 0.024 0.039 -0.040 0.011 -2.079 2.709

Strong Sells 0.290 0.019 0.284 0.024 -0.006 -0.156
0.285 0.008 0.035 0.281 0.019 0.044 -0.004 0.011 -0.121 1.708

Weak Sells 0.310 0.020 0.298 0.021 -0.012 -0.688
0.311 0.018 0.036 0.295 0.023 0.039 -0.016 0.005 -0.887 1.434
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Figure 1: Valuation Factors During the August 2007 Quant Crisis

The below plot illustrates the performance of two valuation factors during late-July and August of 2007. The
plots associated with earnings-to-price and book-to-market are created by estimating the multifactor model
(Equation (1)) using daily total returns as the dependent variable, and then compounding the regression
coefficients over the interval of time depicted. For reference, the plot include the cumulative return to the
Fama-French HML factor which is compounded in a similar manner.
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Figure 2: Distribution of Trade Signals During the Sample Period

Trade signals are generated for all stocks in the sample at the end of each month as described in
Table 5. The below figure presents the number of signal of each type generated for each month in
the sample period, 199501 – 201412.
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Figure 3: Trade Signals and Volume

Trade signals are identified as transitions between expected return quintiles as described in Table 5. For a signal
generated at the end of month t, I measure average daily turnover (volume/shares outstanding) within months
t − 3, t − 2, . . . , t + 3. Let the average daily turnover for stock i during month t be denoted as TOit. To facilitate
comparison of stocks with different levels of turnover, the monthly averages are normalized by their time-series
average:

TO
∗
it =

TOit

1
7

∑t+3
s=t−3 TOis

Normalized turnover is calculated for strong and weak buys and sells, and all other signals are pooled together into
a single group. The plot depicts the average at each point in time across signals in the indicated group. The column
labeled ∆TO

∗
measures the change in normalized volume as TO

∗
t+1 − TO

∗
t−1 for each group.
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t− 3 t− 2 t− 1 t t+ 1 t+ 2 t+ 3 ∆TO
∗

t-stat

No Signal 1.004 0.990 0.985 0.981 0.989 0.999 1.014 0.004 1.079
Strong Buys 0.834 0.753 0.825 1.205 1.175 1.128 1.041 0.350 3.947
Strong Sells 1.097 1.059 1.063 1.035 0.926 0.911 0.865 -0.136 -2.161
Weak Buys 0.897 0.884 0.891 1.185 1.071 1.027 1.003 0.180 6.467
Weak Sells 1.050 1.018 1.005 1.021 0.998 0.952 0.917 -0.007 -0.661
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